[1]       D. B. Papkovsky, G. J. Mohr and O. S. Wolfbeis, New polar plasticizers for luminescence-based sensors, Analytica Chimica Acta, 337, 201-205 (1996).

[2]       B. Nussberger, personal communication (2000).

[3]       P. Hartmann, M. J. P. Leiner and M. E. Lippitsch, Luminescence Quench­ing Behavior of an Oxygen Sensor Based on a Ru(II) Complex Dissolved in Polystyrene, Analytical Chemistry, 67, 88-93 (1995).

[4]       J. C. A. Chaimowicz, Optoelectronics, Butterworth-Heinemann Ltd., Oxford (1989).

[5]       P. C. Hauser, C. L. C. Liang and B. Müller, A solid-state instrument for flu­orescence chemical sensors using a blue light-emitting diode of high inten­sity, Meas. Sci. Technol., 6, 1081-1085 (1995).

[6]       J. Graeme, Photodiode Amplifiers - OP AMP Solutions, McGraw-Hill, New York (1996).

[7]       H. Hisamoto, M. Tsubuku, T. Enomoto, K. Watanabe, H. Kawaguchi, Y. Koike and K. Suzuki, Theory and Practice of Rapid Flow-Through Analy­sis Based on Optode Detection and Its Application to pH Measurement as a Model Case, Analytical Chemistry, 68, 3871-3878 (1996).

[8]       MKS Instruments, Benutzerhandbuch 1179/2179 Gasflussregler, München (1996).

[9]       M. L. Hitchman, Measurement of dissolved Oxygen, John Wiley & Sons/ Orbisphere, Geneva (1978).

[10]     H. Zollinger, Color Chemistry, 2nd edition, VCH, Weinheim (1991).

[11]     P. Belser, Ruthenium(II)-diimin-Komplexe: Photosensibilisatoren mit einzi­gartigen Eigenschaften, Chimia, 44, 226-236 (1990).

[12]     A. v. Zelewsky and P. Belser, On the Way towards New Materials: Metal Complexes as Building Blocks, Chimia, 52, 620-628 (1998).

[13]     J. van_Houten and R. J. Watts, Temperature Dependence of the Photophysi­cal and Photochemical Properties of the Tris(2,2'-bipyridyl)ruthenium(II) Ion in Aqueous Solution, The Journal of the American Chemical Society, 98, 4853-4858 (1976).

[14]     A. Vaidyalingam and P. K. Dutta, Analysis of the Photodecomposition Products of Ru(bpy)32+ in Various Buffers and upon Zeolite Encapsulation, Analytical Chemistry, 72, 5219-5224 (2000).

[15]     X. Zhang and M. A. J. Rodgers, Energy and Electron Transfer Reactions of the MLCT State of Ruthenium Tris(bipyridyl) with Molecular Oxygen: A Laser Flash Photolysis Study, The Journal of Physical Chemistry, 99, 12797-12803 (1995).

[16]     E. R. Carraway, J. N. Demas, B. A. DeGraff and J. R. Bacon, Photophysics and Photochemistry of Oxygen Sensors Based on Luminescent Transition-Metal Complexes, Analytical Chemistry, 63, 337-342 (1991).

[17]     I. Klimant, F. Ruckruh, G. Liebsch, A. Stangelmayer and O. S. Wolfbeis, Fast Response Oxygen Micro-Optodes Based on Novel Soluble Ormosil Glasses, Mikrochim. Acta, 131, 35-46 (1999).

[18]     P. Hartmann, Photochemically Induced Energy-Transfer Effects on The Decay Times of Ruthenium Complexes in Polymers, Analytical Chemistry, 72, 2828-2834 (2000).

[19]     P. Hartmann and M. J. P. Leiner, Photobleaching of a ruthenium complex in polymers used for oxygen optodes and its inhibition by singlet oxygen quenchers, Sensors and Actuators B, 51, 196-202 (1998).

[20]     S. L. Murov, I. Carmichael and G. L. Hug, Chemical Actinometry, Hand­book of Photochemistry, Marcel Dekker Inc., New York (1993).

[21]     E. Lehmann, R. Knochenmuss and R. Zenobi, Ionization mechanisms in matrix-assisted laser desorption ionization mass spectrometry: Contribu­tion of pre-formed ions, Rapid Communications in Mass Spectrometry, 11, 1483-1492 (1997).

[22]     G. J. Mohr, N. Tirelli, C. Lohse and U. E. Spichiger-Keller, Development of Chromogenic Copolymers for Optical Detection of Amines, Advanced Materials, 10, 1353-1357 (1998).

[23]     D. Wöhrle, M. W. Tausch and W.-D. Stohrer, Photochemie - Konzepte, Methoden, Experimente, Wiley-VCH, Weinheim (1998).

[24]     R. Battino, Solubility Data Series: Oxygen and Ozone, Vol. 7, Pergamon Press, Oxford (1981).

[25]     U. P. Fringeli, Skript Vorlesung Infrarotspektroskopie von Membranen und Grenzflächen, Zürich (2000).

[26]     H. Gausepohl and R. Gellert, Polystyrol, Kunststoff Handbuch, Vol. 4, Hanser, München (1996).

[27]     E. Pretsch, J. Seibl, W. Simon and T. Clerc, Tabellen zur Strukturaufklärung organischer Verbindungen mit spektroskopischen Methoden, Springer-Verlag, Berlin (1986).

[28]     D. Kummer and T. Seshadri, 1,10-Phenanthrolin-N-Oxid-Komplexe von Halogensilanen, Z. anorg. allg. Chem., 432, 153-159 (1977).

[29]     A. N. Speca, L. L. Pytlewski and N. M. Karayannis, Transition Metal Chloride Chelates with 1,10-Phenanthroline N-Oxide, Z. anorg. allg. Chem., 422, 182-192 (1976).

[30]     T. J. Meyer, Oxobis(2,2'-bipyridine)pyridineruthenium(IV) Ion, [bpy)2(py)Ru=O]2+, The Journal of the American Chemical Society, 100, 3601-3602 (1978).

[31]     S. Zhao, K. V. Somayajula, A. G. Sharkey, D. M. Herkules, F. Hillenkamp, M. Kara and A. Ingendoh, Novel Method for Matrix-Assisted Laser Mass-Spectrometry of Proteins, Analytical Chemistry, 63, 450-453 (1991).

[32]     C. Köllner, B. Pugin and A. Togni, Dendrimers Containing Chiral Ferroce­nyl Diphosphine Ligands for Asymmetric Catalysis, The Journal of the American Chemical Society, 120, 10274-10275 (1998).

[33]     R. Arakawa, F. Matsuda, G.-e. Matsubayashi and T. Matsuo, Structural Analysis of Photo-oxidized (Ethylendiamine)bis(2,2'-bipyridine)ruthe­nium(II) Complexes by Using On-line Electrospray Mass Spectrometry of Labeled Compounds, J. Am. Soc. Mass. Spectrom., 8, 713-717 (1997).

[34]     W. Herbst and K. Hunger, Industrielle Organische Pigmente - Herstellung, Eigenschaften, Anwendung, VCH, Weinheim (1995).

[35]     B. M. Krasovitskii and B. M. Bolotin, Organic Luminescent Materials, VCH, Weinheim (1988).

[36]     J. F. Rabek, Photodegradation of polymers; physical characteristics and applications, Springer-Verlag, Heidelberg (1996).

[37]     A. Garton, D. J. Carlsen and D. M. Wiles, Photooxidation Mechanisms in Commercial Polyolefins In: N. S. Allen (Ed.), Developments in Polymer Photochemistry, Vol. 1, Applied Science Publishers Ltd., London (1980).

[38]     W. C. Gose, Aqueous Additive Delivery Systems and Their Application in Weather Resistant Polymers, Wheatering well with colorants & additives: Regional Technical Conference, Orlando FL (1993).

[39]     P. R. Paolino, Antioxidants In: J. John T. Lutz (Ed.), Thermoplastic Poly­mer Additives, Marcel Dekker, Inc., New York (1989).

[40]     J. N. Demas and B. A. DeGraff, Design and Application of Highly Lumi­nescent Transition Metal Complexes, Analytical Chemistry, 63, 829A-837A (1991).

[41]     G. Maerker and F. H. Case, The Synthesis of Some 4,4'-Disubstituted 2,2'-Bipyridines, The Journal of the American Chemical Society, 80, 2745-2748 (1958).

[42]     W. Walter and W. Francke, Lehrbuch der Organischen Chemie, S. Hirzel Verlag, Stuttgart (1998).

[43]     A. Vinciguerra, P. G. Simpson, Y. Kakiuti and J. V. Quagliano, The Donor Properties of 2,2'-Bipyridine N,N'-Dioxide, Inorganic Chemistry, 2, 282-286 (1963).

[44]     E. E. Seddon and K. R. Seddon, The Chemistry of Ruthenium, Elsevier Sci­ence Publishers B.V., Amsterdam (1984).

[45]     P. Hartmann, personal communication (1998).

[46]     P. R. Ogilby, M. Kristiansen, D. O. Mártire, R. D. Scurlock, V. L. Taylor and R. L. Clough, Formation and Removal of Singlet (a1Dg) Oxygen in Bulk Polymers: Events That May Influence Photodegradation In: R. L. Clough, N. C. Billingham and K. T. Gillen Eds.), Polymer Durability - Degradation, Stabilization and Lifetime prediction, Advances in Chemistry Series 249, Americal Chemical Society (1996).

[47]     D. R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, Inc., Boca Raton, Florida, USA (1993).

[48]     P. W. Atkins, Physikalische Chemie, VCH, Weinheim (1990).

[49]     S. Draxler, Temperature Dependence of the Photophysical Properties of Ruthenium Diphenylphenanthroline in Liquid and Solid Environments, J. Phys. Chem. A, 103, 4719-4722 (1999).

[50]     M. T. Miller, P. K. Gantzel and T. Karpishin, A Highly Emissive Heterolep­tic Copper(I) Bis(phenanthroline) Complex: [Cu(dbp)(dmp)]+ (dbp = 2,9-Di-tert-butyl-1,10-phenanthroline; dmp = 2,9-Dimethyl-1,10-phenanthro­line), The Journal of the American Chemical Society, 121, 4292-4293 (1999).

[51]     M. T. Miller and T. B. Karpishin, Oxygen sensing by photoluminescence quenching of a heteroleptic copper (I) bis(phenanthroline) complex immo­bilized in polystyrene, Sensors and Actuators B, 61, 222-224 (1999).

[52]     P. McCord and A. J. Bard, Part 54. Electrogenerated chemiluminescence of ruthenium(II) 4,4'-diphenyl-2,2'bipyridine and ruthenium(II) 4,7-diphenyl-1,10-phenanthroline systems in aqueous and acetonitrile solutions, Journal of Electroanalytical Chemistry, 318, 91-99 (1991).

[53]     N. E. Tokel-Takvoryan, R. E. Hemingway and A. J. Bard, Electrogenerated Chemiluminescence. XIII. Electrochemical and Electrogenerated Chemilu­minescence Studies of Ruthenium Chelates, The Journal of the American Chemical Society, 95, 6582-9 (1973).

[54]     I. Rubinstein, C. R. Martin and A. J. Bard, Electrogenerated Chemilumi­nescent Determination of Oxalate, Analytical Chemistry, 55, 1580-82 (1983).

[55]     W. Plieth, G. S. Wilson and C. G. de_la_Fe, Spectroelectrochemistry: A sur­vey of in situ spectroscopic techniques (Technical Report), Pure & Appl. Chem., 70, 1395-1414 (1998).

[56]     F. E. Woodard and C. N. Reilley, Thin Layer Cell Techniques In: E. Yeager, J. O. M. Bockris, B. E. Conway and S. Sarangapani Eds.), Comprehensive Treatise of Electrochemistry - Electrodics:Experimental Techniques, Ple­num Press, New York (1984).

[57]     S. C. Paulson and C. M. Elliott, A Fast-Response, UV-Visible Optically Transparent Thin-Layer Cell for Potential Scan Spectroelectrochemistry, Analytical Chemistry, 68, 1711-1716 (1996).

[58]     P. S. Brateman, J.-I. Song and R. D. Peacock, Spectroelectrochemistry and localization of added electrons in ruthenium(II) mixed-ligand complexes, Spectrochimica Acta, 48A, 899-903 (1992).

[59]     A. J. Fry, Solvents and Supporting Electrolytes In: P. T. Kissinger and W. R. Heineman Eds.), Laboratory Techniques in Electroanalytical Chemistry, Marcel Dekker, Inc., New York (1996).

[60]     R. L. McCreery and K. K. Cline, Carbon Electrodes In: P. T. Kissinger and W. R. Heineman Eds.), Laboratory Techniques in Electroanalytical Chem­istry, Marcel Dekker, Inc., New York (1996).

[61]     G. J. Janz and R. P. Tomkins, Nonaqueous Electrolytes Handbook, Vol. II, Academic Press, Inc., New York (1973).

[62]     X. Q. Lin and K. M. Kadish, Vacuum-Tight Thin-Layer Spectroelectro­chemical Cell with a Doublet Platinum Gauze Working Electrode, Analyti­cal Chemistry, 57, 1498-1501 (1985).

[63]     J. Niu and S. Dong, Applications of Rapid Scan Spectroelectrochemistry-determination of Heterogeneous Electron Transfer Rate Constant of Biliverdin Oxidation, Electrochimica Acta, 38, 257-260 (1993).

[64]     S. Dong and Y. Zhu, Study of the electrode process of Brilliant Cresyl Blue by optically transparent thin-layer spectroelectrochemistry, J. Electroanal. Chem., 263, 79-86 (1989).

[65]     W. R. Heineman and P. T. Kissinger, Large-Amplitude Controlled-Potential Techniques In: P. T. Kissinger and W. R. Heineman Eds.), Laboratory Tech­niques in Electroanalytical Chemistry, Marcel Dekker, Inc., New York (1996).

[66]     N. N. Greenwood and A. Earnshaw, Chemie der Elemente, VCH, Wein­heim (1990).

[67]     D. K. Gosser, Cyclic voltammetry: simulation and analysis of reaction, VCH, New York (1993).

[68]     A. J. Bard and L. R. Faulkner, Electrochemical Methods - Fundamentals and Applications, John Wiley & Sons, New York (1980).

[69]     P. T. Kissinger, Introduction to Analog Instrumentation In: P. T. Kissinger and W. R. Heineman Eds.), Laboratory Techniques in Electroanalytical Chemistry, Marcel Dekker, Inc., New York (1996).

[70]     D. Aurbach, Nonaqueous electrochemistry, Marcel Dekker AG, Basel (1999).

[71]     J. A. Caram and C. Gutiérrez, Cyclic voltammetric and potential-modu­lated reflectance spectroscopic study of the electroadsorption of methanol and ethanol on a platinum electrode in acid and alkaline media, Journal of Electroanalytical Chemistry, 323, 213-230 (1992).

[72]     S.-M. Park, N. C. Chen and N. Doddapaneni, Electrochemical Oxidation of Ethanol in Aqueous Carbonate Solutions, Journal of the Electrochemical Society, 142, 40-45 (1995).

[73]     M. Martin, Etude de l'oxydation de l'ethanol sur electrode de platine plati­nee - applications analytiques, Thèse No 1875, Université de Genève (1978).

[74]     V. Balzani, A. Juris, M. Venturi, S. Campagna and S. Serroni, Luminescent and Redox-Active Polynuclear Transition Metal Complexes, Chem. Rev., 96, 759-833 (1996).

[75]     P. C. Alford, M. J. Cook, A. P. Lewis, G. S. G. McAuliffe, V. Skarda, A. J. Thomson, J. L. Glasper and D. J. Robbins, Luminescent Metal Complexes. Part 5. Luminescence Properties of Ring-substituted 1,10-Phenanthroline Tris-complexes of Ruthenium(II), Journal of the Royal Chemical Society - Perkin Transactions II, 705-709 (1985).

[76]     V. Skarda, M. J. Cook, A. P. Lewis, G. S. G. McAuliffe, A. J. Thomson and D. J. Robbins, Luminescent Metal Complexes. Part 3. Electrochemical Potentials of Ground and Excited States of Ring-substituted 2,2'-Bipyridyl and 1,10-Phenanthroline Tris-complexes of Ruthenium, Journal of the Royal Chemical Society - Perkin Transactions II, 1309-1311 (1984).

[77]     M. J. Cook, A. P. Lewis, G. S. G. McAuliffe, V. Skarda, A. J. Thomson, J. L. Glasper and D. J. Robbins, Luminescent Metal Complexes. Part 1. Tris-chelates of Substituted 2,2'-Bipyridyls with Ruthenium(II) as Dyes for Luminescent Solar Collectors, Journal of the Royal Chemical Society - Perkin Transactions II, 1293-1301 (1984).

[78]     M. J. Cook, A. P. Lewis, G. S. G. McAuliffe, V. Skarda, A. J. Thomson, J. L. Glasper and D. J. Robbins, Luminescent Metal Complexes. Part 2. A Model for the Luminescence Properties of the Tris-chelates of Substituted 2,2'-Bipyridyls with Ruthenium(II), Journal of the Royal Chemical Society - Perkin Transactions II, 1303-1307 (1984).

[79]     A. J. Thomson, V. Skarda, M. J. Cook and D. J. Robbins, Magnetic Circu­lar Dichroism Spectra of Tris-chelate Complexes of 2,2'-Bipyridyl and 1,10-Phenanthroline with Iron(II), Ruthenium(II), and Osmium(II) at 4.2 K, J. Chem. Soc. Dalton Trans., 1781-1788 (1985).

[80]     S. Masuda, T. Nakajima and S. Suga, Retentive Friedel-Crafts Alkylation of Benzene with Optically Active 2-Chloro-1-phenylpropane and 1-Chloro-2-phenylpropane, Bull. Chem. Soc. Jpn., 56, 1089-1094 (1983).

[81]     R. H. F. Manske and M. Kulka, The Skraup Synthesis of Quinolines, Org. Reactions, 7, 59 (1953).

[82]     J. Hiti and C. C. Young, Magnesium Electrode, Patent, United States Nr. PCT/US9/02057 (1992).

[83]     H. Rapoport and A. D. Batcho, 1,5-Naphthyridine and Some of Its Aklyl Derivatives, J. Org. Chem., 28, 1753-1759 (1963).

[84]     M. J. Cook, A. P. Lewis and G. S. McAuliffe, Luminescent Metal Com­plexes 4—13C NMR Spectra of the Tris Chelates of Substituted 2,2'-Bipy­ridyls and 1,10-Phenanthrolines with Ruthenium(II) and Osmium(II), Organic Magnetic Resonance, 22, 388-394 (1984).

[85]     O. Dinten, Experimentelle und theoretische Beiträge zur membrantechnol­ogischen Verbesserung von ionenselektiven Elektroden beruhend auf PVC-Flüssigmembranen, Diss. ETH Nr. 8591, ETH Zürich (1988).

[86]     Sadtler Research Laboratories Inc., Inorganics and Related Compounds, IR Grating Spectra, Vol. 3, Philadelphia (1967).

[87]     Sadtler Research Laboratories Inc., Standard (Infrared) Grating Spectra, Vol. 54, Philadelphia (1978).

[88]     Sadtler Research Laboratories Inc., Standard (Infrared) Grating Spectra, Vol. 49, Philadelphia (1965).

[89]     Sadtler Research Laboratories Inc., Standard Infrared Grating Spectra, Vol. 11, Philadelphia (1978).

[90]     Sadtler Research Laboratories Inc., Inorganics Infrared Grating Spectra, IR Grating Spectra, Vol. 2, Philadelphia (1967).

[91]     T. Karstens and K. Kobs, Rhodamin B and Rhodamin 101 as Reference Substances for Fluorescence Quantum Yield Measurements, The Journal of Physical Chemistry, 84, 1871-1872 (1980).

[92]     K. Nakamura, M. Tanaka and M. Hiroshima, Sci. Rep. Hirosaki Univ., 24, 51 (1977).

[93]     L. De_Cola, F. Barigelletti and M. J. Cook, Photophysical Properties and Photochemical Behaviour of Ruthenium(II) Complexes Containing the 2,2'-Bipyridine and 4,4'-Diphenyl-2,2'-Bipyridine Ligands, Helvetica Chimica Acta, 71, 733-741 (1988).

[94]     K. H. Drexhage, What's ahead in laser dyes, Laser Focus, 9, 35-39 (1973).

[95]     T. Nezel, A. Fakler, G. Zhylyak, G. J. Mohr and U. E. Spichiger-Keller, A highly sensitive NO2-selective Optode Membrane, Sensors and Actuators B, 70, 165-169 (2000).

[96]     E. Bakker, Die Bedeutung von Phasentransfergleichgewichten für die Funktionsweise von ionenselektiven Flüssigmembranoptoden und -elek­troden, Diss. ETH Nr. 10229, ETH Zürich (1993).

[97]     C. Demuth, Entwicklung von nitritselektiven optischen Sensoren und Mod­ellierung und Synthese von Oligopeptiden und Untersuchung ihrer Wech­selwirkung mit Oxoanionen, Diss. ETH Nr. 13152, ETH Zürich (1999).

[98]     C. Demuth and U. E. Spichiger, Response function and analytical parame­ters of nitrite-selective optode membranes in absorbance and fluorescence mode, Analytica Chimica Acta, 355, 259-268 (1997).

[99]     E. Bakker, M. Lerchi, T. Rosatzin, B. Rusterholz and W. Simon, Synthesis and characterization of neutral hydrogen ion-selective chromoionophores for use in bulk optodes, Analytica Chimica Acta, 278, 211-225 (1993).

[100]   U. Spichiger, W. Simon, E. Bakker, M. Lerchi, P. Bühlmann, J.-P. Haug, M. Kuratli, S. Ozawa and S. West, Optical sensors based on neutral carriers, Sensors and Actuators B, 11, 1-8 (1993).

[101]   Y. V. Moiseev and G. E. Zaikov, Chemical Resistance of Polymers in Agressive Media, Consultant Bureau, New York (1987).

[102]   R. Eugster, T. Rosatzin, B. Rusterholz, B. Aebersold, U. Pedrezza, D. Rüegg, A. Schmid, U. E. Spichiger and W. Simon, Plasticizers for liquid polymeric membranes of ion-selective chemical sensors, Analytica Chim­ica Acta, 289, 1-13 (1994).

[103]   M. H. Harwood and R. L. Jones, Temperature dependent ultraviolet-visible absorption cross sections of NO2 and N2O4: Low-temperature measure­ments of the equilibrium constant of 2 NO2 <-> N2O4, Journal of Geo­physical Research, 99, 955-964 (1994).

[104]   Solid State Ionics, 20, 31-44 (1986).

[105]   H. Vogel, Gerthsen Physik, Springer, Heidelberg (1997).

[106]   G. Weissmüller, Determination of structural and electrical properties of supported lipid films by impedance analysis, surface plasmon spectroscopy and reflection interference contrast microscopy, Technische Universität München (1995).

[107]   S.-L. Xie, Bestimmung "Scheinbarer" Ionen-Austauschstromdichten bei ionenselektiven Elektrodenmembranen mit AC-Impedanzmethoden, Tech­nische Universität München (1988).

[108]   H. van_der_Weijde, Impedance Spectroscopy and Organic Barrier Coat­ings; (Im)possibilities, Technische Universiteit Delft (1996).

[109]   W. Hellerich, G. Harsch and S. Haenle, Werkstoff-Führer Kunststoffe: Eigenschaften, Prüfungen, Kennwerte, Carl Hauser Verlag, München (1989).

[110]   M. Lerchi, E. Bakker, B. Rusterholz and W. Simon, Lead-selective bulk optodes based on neutral ionophores with subnanomolar detection limit, Analytical Chemistry, 64, 1534-1540 (1992).

[111]   H. Hartkamp, Prüfgase-Herstellung und Anwendung In: H. Günzler (Ed.), Analytiker Taschenbuch, Vol. 14, Springer, Berlin (1996).

[112]   Eco Chemie B.V., Autolab®, Utrecht (1991).

[113]   M. Buback and H. P. Vögele, FT-NIR Atlas, VCS, Weinheim (1993).

[114]   Fluka, Laborchemikalien und analytische Reagenzien, Buchs, Switzerland (1999).

[115]   L. J. Golonka, B. W. Licznerski, K. Nitsch and H. Teterycz, Thick-film humidity sensors, Meas. Sci. Technol., 8, 92-98 (1997).

[116]   H. R. Christen, Grundlagen der allgemeinen und anorganischen Chemie, Otto Salle Verlag, Frankfurt (1988).

[117]   U. E. Spichiger, Chemical sensors and biosensors for medical and biologi­cal applications, Wiley-VCH, Weinheim (1998).

[118]   W. Trettnak, Optical Sensors Based on Fluorescence Quenching In: O. Wolfbeis (Ed.), Fluorescence Spectroscopy - New Methods and Applica­tions, Springer, Berlin (1993).

[119]   I. Klimant, Entwicklung optischer Sauerstoffsensoren auf der Basis lumineszierender Uebergangsmetallkomplexe, Dissertation, Karl Franzens Universität Graz (1993).

[120]   A. Mills, Optical Oxygen Sensors Utilising the Luminescence of Platinum Metal Complexes, Platinum Metals Rev., 41, 115-127 (1997).

[121]   J. N. Demas, B. A. DeGraff and P. B. Coleman, Oxygen Sensors Based on Luminescence Quenching, Analytical Chemistry, 71, 793A-800A (1999).

[122]   H. Chuang and M. A. Arnold, Radioluminescent light source for optical oxygen sensors, Analytical Chemistry, 69, 1899-1903 (1997).

[123]   D. L. Burden, S. E. Hobbs and G. M. Hieftje, Fluorescence Lifetime Mea­surement via a Radionuclide-Scintillation Light Source and Analog Cross Correlation, Analytical Chemistry, 69, 1936-19441 (1997).

[124]   S. E. Hobbs, R. A. Potyrailo and G. M. Hieftje, Scintillator Light Source for Chemical Sensing in the Near-Ultraviolet, Analytical Chemistry, 69, 3375-3379 (1997).

[125]   J. M. Price, W. Xu, J. N. Demas and B. A. DeGraff, Polymer-Supported pH Sensors Based on Hydrophobically Bound Luminescent Ruthenium(II) Complexes, Analytical Chemistry, 70, 265-270 (1998).

[126]   O. S. Wolfbeis, I. Klimant, T. Werner, C. Huber, U. Kosch, C. Krause, G. Neurauter and A. Dürkop, Set of luminescence decay time based chemical sensors for clinical applications, Sensors and Actuators B, 51, 17-24 (1998).

[127]   H. Szmacinski and J. R. Lakowicz, Lifetime-Based Sensing In: J. R. Lakowicz (Ed.), Probe Design and Chemical Sensing, Vol. 4, Topics in Fluorescence Spectroscopy, Plenum Press, New York (1994).

[128]   A. Mills and M. Thomas, Fluorescence-based Thin Plastic Film Ion-pair Sensors for Oxygen, The Analyst, 122, 63-68 (1997).

[129]   A. Mills, Controlling the sensitivity of optical oxygen sensors, Sensors and Actuators B, 51, 60-68 (1998).

[130]   Z. Rosenzweig and R. Kopelman, Development of a Submicrometer Opti­cal Fiber Oxygen Sensor, Analytical Chemistry, 67, 2650-2654 (1995).

[131]   C. McDonagh, B. D. MacCraith and A. K. McEvoy, Tailoring of Sol-Gel Films for Optical Sensing of Oxygen in Gas and Aqueous Phase, Analytical Chemistry, 70, 45-50 (1998).

[132]   J. R. Bacon and J. N. Demas, Apparatus for Oxygen Determination, Patent, United States Nr. 5,030,420 (1991).

[133]   C. Kolle, W. Gruber, W. Trettnak, K. Biebernik, C. Dolezal, F. Reininger and P. O. Leary, Fast optochemical sensor for continuous monitoring of oxygen in breath-gas analysis, Sensors and Actuators B, 38-39, 141-149 (1997).

[134]   A. N. Watkins, B. R. Wenner, J. D. Jordan, W. Xu, J. N. Demas and F. V. Bright, Portable, Low-Cost, Solid-State Luminescence-Based O2 Sensor, Applied Spectroscopy, 52, 750-754 (1998).

[135]   G. Holst, R. N. Glud, M. Kühl and I. Klimant, A microoptode array for fine-scale measurement of oxygen distribution, Sensors and Actuators B, 38-39, 122-129 (1997).

[136]   PreSens, Oxygen MicroOptodes, Neuburg a. d. Donau (1998).

[137]   S. Röösli, E. Pretsch, W. E. Morf, E. Tsuchida and H. Nishide, Selective optical response to oxygen of membranes based on immobilized cobalt(II) porphyrins, Analytica Chimica Acta, 338, 119-125 (1997).

[138]   A. Mills, Optical sensors for oxygen: a log-gaussian multisite-quenching model, Sensors and Actuators B, 51, 69-76 (1998).

[139]   A. Mills, Response characteristics of optical sensors for oxygen: models based on a distribution in t0 or kq, Analyst, 124, 1301-1307 (1999).

[140]   S. S. Lehrer, Solute Perturbation of Protein Fluorescence. The Quenching of the Tryptophyl Fluorescence of Model Compounds and of Lysozyme by Iodide Ion, Biochemistry, 10, 3254-3263 (1971).

[141]   R. E. Kesting and A. K. Fritzsche, Polymeric Gas Separation Membranes, John Wiley&Sons, Inc., New York (1993).

[142]   M. R. Eftink and C. A. Ghiron, Exposure of Tryptophanyl Residues in Pro­teins. Quantitative Determination by Fluorescence Quenching Studies, Biochemistry, 15, 672-680 (1976).

[143]   F. Hendrick and E. V. Donckt, Chemical optical sensing based on lumines­cence lifetime measurements: a caveat, Sensors and Actuators B, 61, 218-221 (1999).

[144]   W. A. Stahel, Statistische Datenanalyse - Eine Einführung für Naturwis­senschaftler, Vieweg, Wiesbaden (1995).

[145]   I. N. Bronstein and K. A. Semendjajew, Taschenbuch der Mathematik, BSB B. G. Teubner Verlagsgesellschaft, Leipzig (1981).

[146]   G. B. McKenna, Glass Formation and Glassy Behavior In: G. Allen and J. C. Berington Eds.), Comprehensive Polymer Science, Vol. 2 Polymer Prop­erties, Pergamon Press, Oxford (1989).

[147]   J. L. O'Brien, Plasticizers In: J. John T. Lutz (Ed.), Thermoplastic Polymer Additives, Marcel Dekker, Inc., New York (1989).

[148]   S. J. Clarson and J. A. Semlyen, Siloxane Polymers, PTR Prentice-Hall, Englewood Cliffs, New Jersey (1993).

[149]   H.-D. Junge, Index of polymer trade names, VCH, Weinheim (1987).

[150]   O. Dinten, U. E. Spichiger, N. Chaniotakis, P. Gehrig, B. Rusterholz, W. E. Morf and W. Simon, Lifetime of neutral-carrier-based liquid membranes in aqueous samples and blood and the lipophilicity of membrane components, Analytical Chemistry, 63, 596-603 (1991).

[151]   Scientific Polymer Products Inc., Product Catalogue, Ontario, NY, USA (2000).

[152]   R. A. McGill, M. S. Paley and J. M. Harris, Solvatochromic Characteriza­tion of Polymers. Effects of Relative Humidity, Macromolecules, 25, 3015-3019 (1992).

[153]   W. Xu, R. Schmidt, M. Whaley, J. N. Demas, B. A. DeGraff, E. K. Karikari and B. L. Farmer, Oxygen Sensors Based on Luminescence Quenching: Interactions of Pyrene with the Polymer Supports, Analytical Chemistry, 67, 3172-3180 (1995).

[154]   P. Hartmann and W. Trettnak, Effects of Polymer Matrices on Calibration Functions of Luminescent Oxygen Sensors Based on Porphyrin Ketone Complexes, Analytical Chemistry, 68, 2615-2620 (1996).

[155]   D. Phillips, Polymer photophysics: luminescence, energy migration and molecular motion in synthetic polymers, Chapman and Hall, London (1985).

[156]   X.-M. Li, F.-C. Ruan, W.-Y. Ng and K.-Y. Wong, Scanning optical sensor for the measurement of dissolved oxygen and BOD, Sensors and Actuators B, 21, 143-149 (1994).

[157]   H. S. Voraberger, H. Kreimaier and K. Biebernik, Novel Optical Oxygen Sensors withstanding Autoclavation: Technical Solutions and practical Performances, Europt(r)ode 2000, Lyon (2000).

[158]   M. P. Xavier, D. García-Fresnadillo, M. C. Moreno-Bondi and G. Orellana, Oxygen Sensing in Nonaqueous Media Using Porous Glass with Covalently Bound Luminescent Ru(II) Complexes, Analytical Chemistry, 70, 5184-5189 (1998).

[159]   K. P. McNamara, X. Li, A. D. Stull and Z. Rosenzweig, Fiber-optic oxygen sensor based on the fluorescence quenching of tris(5-acrylamido, 1,10 phenanthroline) ruthenium chloride, Analytica Chimica Acta, 361, 73-83 (1998).

[160]   J. N. Demas and G. A. Crosby, The Measurement of Photoluminescence Quantum Yields. A Review, The Journal of Physical Chemistry, 75, 991-1024 (1971).

[161]   L. Zlatkevich, Luminescence techniques in solid state polymer research In: N. S. Allen and E. D. Owen Eds.), Polymer Analysis by Luminescence Spectroscopy, Marcel Dekker, New York (1989).

[162]   L. Zlatkevich, Luminescence techniques in solid state polymer research In: G. A. George (Ed.), Luminescence in the solid state, Marcel Dekker, New York (1989).

[163]   J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York (1983).

[164]   G. Ostrom and J. N. Demas, Luminescence Quantum Counters. Compari­son of Front and Rear Viewing Configurations, Analytical Chemistry, 58, 1721-1725 (1986).

[165]   W. H. Melhuish, A Standard Fluorescence Spectrum for Calibrating Spec­tro-Fluorophotometers, The Journal of Physical Chemistry, 64, 762-764 (1960).

[166]   I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules, Academic Press, New York (1971).

[167]   E. Lippert, W. Nägele, I. Seibold-Blankenstein, U. Staiger and W. Voss, Messung von Fluorescenzspektren mit Hilfe von Spektralphotometern und Vergleichsstandards, Z. analyt. Chem., 170, 1-18 (1959).

[168]   B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, John Wiley & Sons, New York (1991).

[169]   J. V. Morris, Fluorescence Quantum Yield Determinations. 9,10-Dipheny­lanthracene as a Reference Standard in Different Solvents, The Journal of Physical Chemistry, 80, 969-974 (1976).

[170]   C. Preininger and G. J. Mohr, Fluorosensors for ammonia using rhodamines immobilized in plasticized poly(vinyl chloride) and in sol-gel; a comparative study, Analytica Chimica Acta, 342, 207-213 (1997).

[171]   G. Buxbaum, Industrial Inorganic Pigments, Wiley-VCH, Weinheim (1998).